35 research outputs found

    Study of Di-muon Production Process in pppp Collision in CMS Data from Symmetry Scaling Perspective

    Full text link
    A deailed knowledge of pp collision is required both as input to comprehensive theoretical models of strong interactions and as baseline to decipher the AA collisions at relativistic and ultrarelativistic energies, which has been of great interest in the area of theoretical and experimental physics. The multiplicity distribution of particles produced in pp collisions and the multiplicity dependence of various global event features serve as rudimentary observables which reflect the features of the inherent dynamics of the process of particle production. Recent availability of dimuon data has triggered spur of interests in revisiting strong interaction process, the study of which in detail is extremely important for enhancement of our understanding on not only the theory of strong interaction but also possible physics scenarios beyond the standard model. Numerous papers have come up where background of production process of dimuon in pp collision has been discussed and analyzed particularly for production of dimuon from {\gamma}{\gamma} interaction. Apart from conventional approaches the present authors proposed a new approach with successful application in context of symmetry scaling in AA collision data from ALICE, pp collisions at 8TeV from CMS and so on. The different approach essentially analyses fluctuation pattern from the perspective of symmetry scaling or degree of self-similarity involved in the process. The proposed methods of analysis using pseudorapidity values of di-muon data taken from the primary dataset of RunA(2011)-7TeV and RunB(2012)-8TeV of the pp collision from CMS, reveal that pseudorapidity spaces corresponding to different ranges of rapidity are highly scale-free and the scaling pattern changes from one rapidity range to another at both energy. Also, the degree of cross-correlation between rapidity and azimuthal space has been found to follow the similar behavior.Comment: 14 pages, 14 figures, primary category-Experiment [hep-ex], PACS 10.-"The Physics of Elementary Particles and Fields

    iMOTdb—a comprehensive collection of spatially interacting motifs in proteins

    Get PDF
    Realization of conserved residues that represent a protein family is crucial for clearer understanding of biological function as well as for the better recognition of additional members in sequence databases. Functionally important residues are recognized well due to their high degree of conservation in closely related sequences and are annotated in functional motif databases. Structural motifs are central to the integrity of the fold and require careful analysis for their identification. We report the availability of a database of spatially interacting motifs in single protein structures as well as those among distantly related protein structures that belong to a superfamily. Spatial interactions amongst conserved motifs are automatically measured using sequence similarity scores and distance calculations. Interactions between pairs of conserved motifs are described in the form of pseudoenergies. iMOTdb database provides information for 854 488 motifs corresponding to 60 849 protein structural domains and 22 648 protein structural entries

    GenDiS: Genomic Distribution of protein structural domain Superfamilies

    Get PDF
    Several proteins that have substantially diverged during evolution retain similar three-dimensional structures and biological function inspite of poor sequence identity. The database on Genomic Distribution of protein structural domain Superfamilies (GenDiS) provides record for the distribution of 4001 protein domains organized as 1194 structural superfamilies across 18 997 genomes at various levels of hierarchy in taxonomy. GenDiS database provides a survey of protein domains enlisted in sequence databases employing a 3-fold sequence search approach. Lineage-specific literature is obtained from the taxonomy database for individual protein members to provide a platform for performing genomic and phyletic studies across organisms. The database documents residual properties and provides alignments for the various superfamily members in genomes, offering insights into the rational design of experiments and for the better understanding of a superfamily. GenDiS database can be accessed at http://www.ncbs.res.in/~faculty/mini/gendis/home.html

    PASS2: an automated database of protein alignments organised as structural superfamilies

    Get PDF
    BACKGROUND: The functional selection and three-dimensional structural constraints of proteins in nature often relates to the retention of significant sequence similarity between proteins of similar fold and function despite poor sequence identity. Organization of structure-based sequence alignments for distantly related proteins, provides a map of the conserved and critical regions of the protein universe that is useful for the analysis of folding principles, for the evolutionary unification of protein families and for maximizing the information return from experimental structure determination. The Protein Alignment organised as Structural Superfamily (PASS2) database represents continuously updated, structural alignments for evolutionary related, sequentially distant proteins. DESCRIPTION: An automated and updated version of PASS2 is, in direct correspondence with SCOP 1.63, consisting of sequences having identity below 40% among themselves. Protein domains have been grouped into 628 multi-member superfamilies and 566 single member superfamilies. Structure-based sequence alignments for the superfamilies have been obtained using COMPARER, while initial equivalencies have been derived from a preliminary superposition using LSQMAN or STAMP 4.0. The final sequence alignments have been annotated for structural features using JOY4.0. The database is supplemented with sequence relatives belonging to different genomes, conserved spatially interacting and structural motifs, probabilistic hidden markov models of superfamilies based on the alignments and useful links to other databases. Probabilistic models and sensitive position specific profiles obtained from reliable superfamily alignments aid annotation of remote homologues and are useful tools in structural and functional genomics. PASS2 presents the phylogeny of its members both based on sequence and structural dissimilarities. Clustering of members allows us to understand diversification of the family members. The search engine has been improved for simpler browsing of the database. CONCLUSIONS: The database resolves alignments among the structural domains consisting of evolutionarily diverged set of sequences. Availability of reliable sequence alignments of distantly related proteins despite poor sequence identity and single-member superfamilies permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure-function relationships of individual superfamilies. PASS2 is accessible a

    Global Retinoblastoma Presentation and Analysis by National Income Level.

    Get PDF
    Importance: Early diagnosis of retinoblastoma, the most common intraocular cancer, can save both a child's life and vision. However, anecdotal evidence suggests that many children across the world are diagnosed late. To our knowledge, the clinical presentation of retinoblastoma has never been assessed on a global scale. Objectives: To report the retinoblastoma stage at diagnosis in patients across the world during a single year, to investigate associations between clinical variables and national income level, and to investigate risk factors for advanced disease at diagnosis. Design, Setting, and Participants: A total of 278 retinoblastoma treatment centers were recruited from June 2017 through December 2018 to participate in a cross-sectional analysis of treatment-naive patients with retinoblastoma who were diagnosed in 2017. Main Outcomes and Measures: Age at presentation, proportion of familial history of retinoblastoma, and tumor stage and metastasis. Results: The cohort included 4351 new patients from 153 countries; the median age at diagnosis was 30.5 (interquartile range, 18.3-45.9) months, and 1976 patients (45.4%) were female. Most patients (n = 3685 [84.7%]) were from low- and middle-income countries (LMICs). Globally, the most common indication for referral was leukocoria (n = 2638 [62.8%]), followed by strabismus (n = 429 [10.2%]) and proptosis (n = 309 [7.4%]). Patients from high-income countries (HICs) were diagnosed at a median age of 14.1 months, with 656 of 666 (98.5%) patients having intraocular retinoblastoma and 2 (0.3%) having metastasis. Patients from low-income countries were diagnosed at a median age of 30.5 months, with 256 of 521 (49.1%) having extraocular retinoblastoma and 94 of 498 (18.9%) having metastasis. Lower national income level was associated with older presentation age, higher proportion of locally advanced disease and distant metastasis, and smaller proportion of familial history of retinoblastoma. Advanced disease at diagnosis was more common in LMICs even after adjusting for age (odds ratio for low-income countries vs upper-middle-income countries and HICs, 17.92 [95% CI, 12.94-24.80], and for lower-middle-income countries vs upper-middle-income countries and HICs, 5.74 [95% CI, 4.30-7.68]). Conclusions and Relevance: This study is estimated to have included more than half of all new retinoblastoma cases worldwide in 2017. Children from LMICs, where the main global retinoblastoma burden lies, presented at an older age with more advanced disease and demonstrated a smaller proportion of familial history of retinoblastoma, likely because many do not reach a childbearing age. Given that retinoblastoma is curable, these data are concerning and mandate intervention at national and international levels. Further studies are needed to investigate factors, other than age at presentation, that may be associated with advanced disease in LMICs

    The global retinoblastoma outcome study : a prospective, cluster-based analysis of 4064 patients from 149 countries

    Get PDF
    DATA SHARING : The study data will become available online once all analyses are complete.BACKGROUND : Retinoblastoma is the most common intraocular cancer worldwide. There is some evidence to suggest that major differences exist in treatment outcomes for children with retinoblastoma from different regions, but these differences have not been assessed on a global scale. We aimed to report 3-year outcomes for children with retinoblastoma globally and to investigate factors associated with survival. METHODS : We did a prospective cluster-based analysis of treatment-naive patients with retinoblastoma who were diagnosed between Jan 1, 2017, and Dec 31, 2017, then treated and followed up for 3 years. Patients were recruited from 260 specialised treatment centres worldwide. Data were obtained from participating centres on primary and additional treatments, duration of follow-up, metastasis, eye globe salvage, and survival outcome. We analysed time to death and time to enucleation with Cox regression models. FINDINGS : The cohort included 4064 children from 149 countries. The median age at diagnosis was 23·2 months (IQR 11·0–36·5). Extraocular tumour spread (cT4 of the cTNMH classification) at diagnosis was reported in five (0·8%) of 636 children from high-income countries, 55 (5·4%) of 1027 children from upper-middle-income countries, 342 (19·7%) of 1738 children from lower-middle-income countries, and 196 (42·9%) of 457 children from low-income countries. Enucleation surgery was available for all children and intravenous chemotherapy was available for 4014 (98·8%) of 4064 children. The 3-year survival rate was 99·5% (95% CI 98·8–100·0) for children from high-income countries, 91·2% (89·5–93·0) for children from upper-middle-income countries, 80·3% (78·3–82·3) for children from lower-middle-income countries, and 57·3% (52·1-63·0) for children from low-income countries. On analysis, independent factors for worse survival were residence in low-income countries compared to high-income countries (hazard ratio 16·67; 95% CI 4·76–50·00), cT4 advanced tumour compared to cT1 (8·98; 4·44–18·18), and older age at diagnosis in children up to 3 years (1·38 per year; 1·23–1·56). For children aged 3–7 years, the mortality risk decreased slightly (p=0·0104 for the change in slope). INTERPRETATION : This study, estimated to include approximately half of all new retinoblastoma cases worldwide in 2017, shows profound inequity in survival of children depending on the national income level of their country of residence. In high-income countries, death from retinoblastoma is rare, whereas in low-income countries estimated 3-year survival is just over 50%. Although essential treatments are available in nearly all countries, early diagnosis and treatment in low-income countries are key to improving survival outcomes.The Queen Elizabeth Diamond Jubilee Trust and the Wellcome Trust.https://www.thelancet.com/journals/langlo/homeam2023Paediatrics and Child Healt

    Probing resonance states in high-energy interaction: a novel approach using complex network technique based on symmetry scaling

    No full text
    Traditionally invariant-mass/transverse-momentum methods were being used to probe various resonance-states in high-energy-collision. Here, we have done scaling analysis by implementing complex-network-based-method (a chaos-based-approach) of visibility-graph to analyze different resonance-states. In the process we use scaling-exponent [power of scale-freeness-of-visibility-graph (PSVG)] calculated from the aforementioned graph. The method is applied to analyze the fractal behavior of pseudo-rapidity-space of the produced dimuons from the events produced in p–p collision at 7 and 8 TeV from CMS collaboration for different ranges of invariant mass of the dimuons. It is found that the fluctuation-pattern of the pseudorapidity-spaces with different ranges of invariant mass has inherent scale-freeness and shows high degree of self-similarity and fractal nature. Moreover, the experiment reveals that the scaling pattern, degree-of-scale-freeness and fractal na ture of the fluctuation differ with different pseodorapidity-space having different ranges of invariant-mass. This change in scaling behavior is reflected in the values of (PSVG) extracted from the corresponding pseudorapidity-space. These different degree of changes in the simple yet rigorous parameter (PSVG) may be indicative of the formation of various resonance-like states(producing di-leptons) and other unusual phenomena. We propose that this method may detect the resonance states in various high energy interactions without using conventional methods of invariant-mass/transverse-momentum techniques and also may detect some unusual phenomena like formation of clusters or structures of cascades etc. This paper reports an application of this method to probe resonance states in p–p collision data at 7 and 8 TeV from CMS by analyzing pseudorapidity-space of the produced dimuons without analyzing their invariant-mass-spectrum
    corecore